Thomas S. Ray
School of Life & Health Sciences, University of Delaware, Newark, Delaware 19716, email:
ray@brahms.udel.edu

An Approach to the Synthesis of Life

Marcel, a mechanical chessplayer... his exquisite 19th-century brainwork—
the human art it took to build which has been flat lost, lost as the dodo bird
... But where inside Marcel is the midget Grandmaster, the little Johann
Allgeier? Where’s the pantograph, and the magnets? Nowhere. Marcel re-
ally is a mechanical chessplayer. No fakery inside to give him any touch of
humanity at all.

— Thomas Pynchon, Gravity’s Rainbow.

INTRODUCTION

Ideally, the science of biology should embrace all forms of life. However in prac-
tice, it has been restricted to the study of a single instance of life, life on earth.
Because biology is based on a sample size of one, we can not know what features
of life are peculiar to earth, and what features are general, characteristic of all life.
A truly comparative natural biology would require inter-planetary travel, which is
light years away. The ideal experimental evolutionary biology would involve cre-
ation of multiple planetary systems, some essentially identical, others varying by

Artificial Life 11, SFI Studies in the Sciences of Complexity, vol. X, edited by
C. G. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen, Addison-Wesley, 1991 371

372 Thomas S. Ray

a parameter of interest, and observing them for billions of years. A practical al-
ternative to an inter-planetary or mythical biology is to create synthetic life in a
computer. “Evolution in a bottle” provides a valuable tool for the experimental
study of evolution and ecology.

The intent of this work is to synthesize rather than simulate life. This approach
starts with hand-crafted organisms already capable of replication and open-ended
evolution, and aims to generate increasing diversity and complexity in a parallel to
the Cambrian explosion.

To state such a goal leads to semantic problems, because life must be defined
in a way that does not restrict it to carbon-based forms. It is unlikely that there
could be general agreement on such a definition, or even on the proposition that
life need not be carbon based. Therefore, I will simply state my conception of life in
its most general sense. I would consider a system to be living if it is self-replicating,
and capable of open-ended evolution. Synthetic life should self-replicate, and evolve
structures or processes that were not designed-in or preconceived by the creator.*?

Core Wars programs, computer viruses, and worms'h14:15,16,17,18,19,46,48 e
capable of self-replication, but fortunately, not evolution. It is unlikely that such
programs will ever become fully living, because they are not likely to be able to
evolve.

Most evolutionary simulations are not open ended. Their potential is limited by
the structure of the model, which generally endows each individual with a genome
consisting of a set of pre-defined genes, each of which may exist in a pre-defined set
of allelic forms. 1213172742 The object being evolved is generally a data structure
representing the genome, which the simulator program mutates and/or recombines,
selects, and replicates according to criteria designed into the simulator. The data
structures do not contain the mechanism for replication; they are simply copied by
the simulator if they survive the selection phase.

Self-replication is critical to synthetic life because without it, the mechanisms
of selection must also be pre-determined by the simulator. Such artificial selection
can never be as creative as natural selection. The organisms are not free to invent
their own fitness functions. Freely evolving creatures will discover means of mutual
exploitation and associated implicit fitness functions that we would never think
of. Simulations constrained to evolve with pre-defined genes, alleles, and fitness
functions are dead ended, not alive.

The approach presented here does not have such constraints. Although the
model is limited to the evolution of creatures based on sequences of machine in-
structions, this may have a potential comparable to evolution based on sequences of
organic molecules. Sets of machine instructions similar to those used in the Tierra
Simulator have been shown to be capable of “universal computation.”%3%3% This
suggests that evolving machine codes should be able to generate any level of com-
plexity.

Other examples of the synthetic approach to life can be seen in the work of
Holland,?® Farmer et al.,?? Langton,3! Rasmussen et al.," and Bagley et al.3 A
characteristic these efforts generally have in common is that they parallel the origin

An Approach to the Synthesis of Life 373

of life event by attempting to create prebiotic conditions from which life may emerge
spontaneously and evolve in an open-ended fashion.

While the origin of life is generally recognized as an event of the first order,
there is another event in the history of life that is less well known but of compara-
ble significance: the origin of biological diversity and macroscopic multicellular life
during the Cambrian explosion 600 million years ago. This event involved a riotous
diversification of life forms. Dozens of phyla appeared suddenly, many existing only
fleetingly, as diverse and sometimes bizarre ways of life were explored in a relative
ecological void.?*3?

The work presented here aims to parallel the second major event in the history
of life, the origin of diversity. Rather than attempting to create prebiotic conditions
from which life may emerge, this approach involves engineering over the early his-
tory of life to design complex evolvable organisms, and then attempting to create
the conditions that will set off a spontaneous evolutionary process of increasing
diversity and complexity of organisms. This work represents a first step in this di-
rection, creating an artificial world which may roughly parallel the RNA world of
self-replicating molecules (still falling far short of the Cambrian explosion).

The approach has generated rapidly diversifying communities of self-replicating
organisms exhibiting open-ended evolution by natural selection. From a single rudi-
mentary ancestral creature containing only the code for self-replication, interactions
such as parasitism, —inximmunity, hyper-parasitism, sociality, and cheating have
emerged spontaneously. This paper presents a methodology and some first results.

Here was a world of simplicity and certainty no acidhead, no revolutionary
anarchist would ever find, a world based on the one and zero of life and
death. Minimal, beautiful. The patterns of lives and deaths.... weightless,
invisible chains of electronic presence or absence. If patterns of ones and
zeros were “like” patterns of human lives and deaths, if everything about
an individual could be represented in a computer record by a long string of
ones and zeros, then what kind of creature would be represented by a long
string of lives and deaths? It would have to be up one level at least—an
angel, a minor god, something in a UFO.

— Thomas Pynchon, Vineland.

METHODS
THE METAPHOR

Organic life is viewed as utilizing energy, mostly derived from the sun, to organize
matter. By analogy, digital life can be viewed as using CPU (central processing
unit) time, to organize memory. Organic life evolves through natural selection as
individuals compete for resources (light, food, space, etc.) such that genotypes which

374 Thomas S. Ray

leave the most descendants increase in frequency. Digital life evolves through the
same process, as replicating algorithms compete for CPU time and memory space,
and organisms evolve strategies to exploit one another. CPU time is thought of as
the analog of the energy resource, and memory as the analog of the spatial resource.

The memory, the CPU, and the computer’s operating system are viewed as
elements of the “abiotic” environment. A “creature” is then designed to be specif-
ically adapted to the features of the environment. The creature consists of a self-
replicating assembler language program. Assembler languages are merely mnemon-
ics for the machine codes that are directly executed by the CPU. These machine
codes have the characteristic that they directly invoke the instruction set of the
CPU and services provided by the operating system.

All programs, regardless of the language they are written in, are converted into
machine code before they are executed. Machine code is the natural langnage of
the machine, and machine instructions are viewed by this author as the “atomic
units” of computing. It is felt that machine instructions provide the most natural
basis for an artificial chemistry of creatures designed to live in the computer.

In the biological analogy, the machine instructions are considered to be more
like the amino acids than the nucleic acids, because they are “chemically active.”
They actively manipulate bits, bytes, CPU registers, and the movements of the
instruction pointer (as will be discussed later). The digital creatures discussed here
are entirely constructed of machine instructions. They are considered analogous
to creatures of the RNA world, because the same structures bear the “genetic”
information and carry out the “metabolic” activity.

A block of RAM memory (random access memory, also known as “main” or
“core” memory) in the computer is designated as a “soup” which can be inoculated
with creatures. The “genome” of the creatures consists of the sequence of machine
instructions that make up the creature’s self-replicating algorithm. The prototype
creature consists of 80 machine instructions; thus, the size of the genome of this
creature is 80 instructions, and its “genotype” is the specific sequence of those 80
instructions.

THE VIRTUAL COMPUTER—TIERRA SIMULATOR

The computers we use are general purpose computers, which means, among other
things, that they are capable of emulating through software the behavior of any
other computer that ever has been built or that could be built.23338% We can utilize
this flexibility to design a computer that would be especially hospitable to synthetic
life.

There are several good reasons why it is not wise to attempt to synthesize
digital organisms that exploit the machine codes and operating systems of real
computers. The most urgent is the potential threat of natural evolution of machine

An Approach to the Synthesis of Life 375

codes leading to virus or worm types of programs that could be difficult to eradi-
cate due to their changing “genotypes.” This potential argues strongly for creating
evolution exclusively in programs that run only on virtual computers and their vir-
tual operating systems. Such programs would be nothing more than data on a real
computer, and, therefore, would present no more threat than the data in a data
base or the text file of a word processor.

Another reason to avoid developing digital organisms in the machine code of
a real computer is that the artificial system would be tied to the hardware and
would become obsolete as quickly as the particular machine it was developed on. In
contrast, an artificial system developed on a virtual machine could be easily ported
to new real machines as they become available.

A third issue, which potentially makes the first two moot, is that the machine
languages of real machines are not designed to be evolvable, and in fact might not
support significant evolution. Von Neuman-type machine languages are considered
to be “brittle,” meaning that the ratio of viable programs to possible programs
is virtually zero. Any mutation or recombination event in a real machine code is
almost certain to produce a non-functional program. The problem of brittleness
can be mitigated by designing a virtual computer whose machine code is designed
with evolution in mind. Farmer and Belin?® have suggested that overcoming this
brittleness and “discovering how to make such self-replicating patterns more robust
so that they evolve to increasingly more complex states is probably the central
problem in the study of artificial life.”

The work described here takes place on a virtual computer known as Tierra
(Spanish for Earth). Tierra is a parallel computer of the MIMD (multiple instruc-
tion, multiple data) type, with a processor (CPU) for each creature. Parallelism is
imperfectly emulated by allowing each CPU to execute a small time slice in turn.
Each CPU of this virtual computer contains two address registers, two numeric
registers, a flags register to indicate error conditions, a stack pointer, a ten-word
stack, and an instruction pointer. Each virtual CPU is implemented via the C
structure listed in Appendix A. Computations performed by the Tierran CPUs are
probabilistic due to flaws that occur at a low frequency (see Mutation below).

The instruction set of a CPU typically performs simple arithmetic operations
or bit manipulations, within the small set of registers contained in the CPU. Some
instructions move data between the registers in the CPU, or between the CPU
registers and the RAM (main) memory. Other instructions control the location and
movement of an “instruction pointer” (IP). The IP indicates an address in RAM,
where the machine code of the executing program (in this case a digital organism)
is located.

The CPU perpetually performs a fetch-decode-execute-increment-IP cycle: The
machine code instruction currently addressed by the IP is fetched into the CPU,
its bit pattern is decoded to determine which instruction it corresponds to, and
the instruction is executed. Then the IP is incremented to point sequentially to the
next position in RAM, from which the next instruction will be fetched. However,
some instructions like JMP, CALL, and RET directly manipulate the IP, causing
execution to jump to some other sequence of instructions in the RAM. In the Tierra

376 Thomas S. Ray

Simulator this CPU cycle is implemented through the time-slice routine listed in
Appendix B.

THE TIERRAN LANGUAGE

Before attempting to set up an Artificial Life system, careful thought must be given
to how the representation of a programming language affects its adaptability in the
sense of being robust to genetic operations such as mutation and recombination.
The nature of the virtual computer is defined in large part by the instruction set of
its machine language. The approach in this study has been to loosen up the machine
code in a “virtual bio-computer,” in order to create a computational system based
on a hybrid between biological and classical von Neumann processes.

In developing this new virtual language, which is called “Tierran,” close atten-
tion has been paid to the structural and functional properties of the informational
system of biological molecules: DNA, RNA, and proteins. Two features have been
borrowed from the biological world which are considered to be critical to the evolv-
ability of the Tierran language.

First, the instruction set of the Tierran language has been defined to be of
a size that is the same order of magnitude as the genetic code. Information is
encoded into DNA through 64 codons, which are translated into 20 amino acids. In
its present manifestation, the Tierran language consists of 32 instructions, which
can be represented by five bits, operands included.

Emphasis is placed on this last point because some instruction sets are de-
ceptively small. Some versions of the redcode language of Core Wars,!®1845 for
example, are defined to have ten operation codes. It might appear on the surface
that the instruction set is of size ten. However, most of the ten instructions have
one or two operands. Each operand has four addressing modes, and then an integer.
When we consider that these operands are embedded into the machine code, we
realize that they are, in fact, a part of the instruction set, and this set works out
to be about 10! in size. Inclusion of numeric operands will make any instruction
set extremely large in comparison to the genetic code.

In order to make a machine code with a truly small instruction set, we must
eliminate numeric operands. This can be accomplished by allowing the CPU reg-
isters and the stack to be the only operands of the instructions. When we need to
encode an integer for some purpose, we can create it in a numeric register through
bit manipulations: flipping the low-order bit and shifting left. The program can
contain the proper sequence of bit flipping and shifting instructions to synthesize
the desired number, and the instruction set need not include all possible integers.

A second feature that has been borrowed from molecular biology in the design of
the Tierran language is the addressing mode, which is called “address by template.”
In most machine codes, when a piece of data is addressed, or the IP jumps to another
piece of code, the exact numeric address of the data or target code is specified in

An Approach to the Synthesis of Life 377

the machine code. Consider that in the biological system by contrast, in order for
protein molecule A in the cytoplasm of a cell to interact with protein molecule
B, it does not specify the exact coordinates where B is located. Instead, molecule
A presents a template on its surface which is complementary to some surface on
B. Diffusion brings the two together, and the complementary conformations allow
them to interact.

Addressing by template is illustrated by the Tierran JMP instruction. Each
JMP instruction is followed by a sequence of NOP (no-operation) instructions, of
which there are two kinds: NOP_0 and NOP_1. Suppose we have a piece of code
with five instruction in the following order: JMP NOP_0 NOP_0 NOP_0 NOP_1.
The system will search outward in both directions from the JMP instruction looking
for the nearest occurrence of the complementary pattern: NOP_1 NOP_1 NOP_I
NOP_0. If the pattern is found, the instruction pointer will move to the end of the
pattern and resume execution. If the pattern is not found, an error condition (flag)
will be set and the JMP instruction will be ignored (in practice, a limit is placed
on how far the system may search for the pattern).

The Tierran language is characterized by two unique features: a truly small
instruction set without numeric operands, and addressing by template. Otherwise,
the language consists of familiar instructions typical of most machine languages,
e.g., MOV, CALL, RET, POP, PUSH, etc. The complete instruction set is listed
in Appendix B.

THE TIERRAN OPERATING SYSTEM

The Tierran virtual computer needs a virtual operating system that will be hos-
pitable to digital organisms. The operating system will determine the mechanisms
of interprocess communication, memory allocation, and the allocation of CPU time
among competing processes. Algorithms will evolve so as to exploit these features to
their advantage. More than being a mere aspect of the environment, the operating
system, together with the instruction set will determine the topology of possible in-
teractions between individuals, such as the ability of pairs of individuals to exhibit
predator-prey, parasite-host, or mutualistic relationships.

MEMORY ALLOCATION—CELLULARITY

The Tierran computer operates on a block of RAM of the real computer which is
set aside for the purpose. This block of RAM is referred to as the “soup.” In most
of the work described here the soup consisted of 60,000 bytes, which can hold the
same number of Tierran machine instructions. Each “creature” occupies some block
of memory in this soup.

Cellularity is one of the fundamental properties of organic life, and can be
recognized in the fossil record as far back as 3.6 billion years. The cell is the original

378 Thomas S. Ray

individual, with the cell membrane defining its limits and preserving its chemical
integrity. An analog to the cell membrane is needed in digital organisms in order to
preserve the integrity of the informational structure from being disrupted easily by
the activity of other organisms. The need for this can be seen in AL models such
as cellular automata where virtual state machines pass through one another 3132
or in core-wars-type simulations where coherent structures demolish one another
when they come into contact.!31%43

Tierran creatures are considered to be cellular in the sense that they are pro-
tected by a “semi-permeable membrane” of memory allocation. The Tierran oper-
ating system provides memory allocation services. Each creature has exclusive write
privileges within its allocated block of memory. The “size” of a creature is just the
size of its allocated block (e.g., 80 instructions). This usually corresponds to the
size of the genome. While write privileges are protected, read and execute privileges
are not. A creature may examine the code of another creature, and even execute it,
but it can not write over it. Each creature may have exclusive write privileges in
at most two blocks of memory: the one that it is born with which is referred to as
the “mother cell,” and a second block which it may obtain through the execution
of the MAL (memory allocation) instruction. The second block, referred to as the
“daughter cell,” may be used to grow or reproduce into.

When Tierran creatures “divide,” the mother cell loses write privileges on the
space of the daughter cell, but is then free to allocate another block of memory. At
the moment of division, the daughter cell is given its own instruction pointer, and
is free to allocate its own second block of memory.

TIME SHARING—THE SLICER

The Tierran operating system must be multi-tasking in order for a community of
individual creatures to live in the soup simultaneously. The system doles out small
slices of CPU time to each creature in the soup in turn. The system maintains a
circular queue called the “slicer queue.” As each creature is born, a virtual CPU
is created for it, and it enters the slicer queue just ahead of its mother, which is
the active creature at that time. Thus, the newborn will be the last creature in the
soup to get another time slice after the mother, and the mother will get the next
slice after its daughter. As long as the slice size is small relative to the generation
time of the creatures, the time-sharing system causes the world to approximate
parallelism. In actuality, we have a population of virtual CPUs, each of which gets
a slice of the real CPU’s time as it comes up in the queue.

The number of instructions to be executed in each time slice is set proportional
to the size of the genome of the creature being executed, raised to a power. If the
“slicer power” is equal to one, then the slicer is size neutral, the probability of an
instruction being executed does not depend on the size of the creature in which it
occurs. If the power is greater than one, large creatures get more CPU cycles per
instruction than small creatures. If the power is less than one, small creatures get

An Approach to the Synthesis of Life 379

more CPU cycles per instruction. The power determines if selection favors large or
small creatures, or is size neutral. A constant slice size selects for small creatures.

MORTALITY—THE REAPER

Self-replicating creatures in a fixed-size soup would rapidly fill the soup and lock
up the system. To prevent this from occurring, it is necessary to include mortality.
The Tierran operating system includes a “reaper” which begins “killing” creatures
when the memory fills to some specified level (e.g., 80%). Creatures are killed by
deallocating their memory, and removing them from both the reaper and slicer
queues. Their “dead” code is not removed from the soup.

In the present system, the reaper uses a linear queue. When a creature is born, it
enters the bottom of the queue. The reaper always kills the creature at the top of the
queue. However, individuals may move up or down in the reaper queue according to
their success or failure at executing certain instructions. When a creature executes
an instruction that generates an error condition, it moves one position up the queue,
as long as the individual ahead of it in the queue has not accumulated a greater
number of errors. Two of the instructions are somewhat difficult to execute without
generating an error, therefore successful execution of these instructions moves the
creature down the reaper queue one position, as long as it has not accumulated
more errors than the creature below it.

The effect of the reaper queue is to cause algorithms which are fundamentally
flawed to rise to the top of the queue and die. Vigorous algorithms have a greater
longevity, but in general, the probability of death increases with age.

MUTATION

In order for evolution to occur, there must be some change in the genome of the
creatures. This may occur within the lifespan of an individual, or there may be errors
in passing along the genome to offspring. In order to insure that there is genetic
change, the operating system randomly flips bits in the soup, and the instructions
of the Tierran language are imperfectly executed.

Mutations occur in two circumstances. At some background rate, bits are ran-
domly selected from the entire soup (60,000 instructions totaling 300,000 bits) and
flipped. This is analogous to mutations caused by cosmic rays, and has the effect of
preventing any creature from being immortal, as it will eventually mutate to death.
The background mutation rate has generally been set at about 1 bit flipped for
every 10,000 Tierran instructions executed by the system.

In addition, while copying instructions during the replication of creatures, bits
are randomly flipped at some rate in the copies. The copy mutation rate is the higher
of the two, and results in replication errors. The copy mutation rate has generally
been set at about 1 bit flipped for every 1,000 to 2,500 instructions moved. In
both classes of mutation, the interval between mutations varies randomly within a
certain range to avoid possible periodic effects.

380 Thomas S. Ray

In addition to mutations, the execution of Tierran instructions is flawed at
a low rate. For most of the 32 instructions, the result is off by +1 at some low
frequency. For example, the increment instruction normally adds one to its register,
but it sometimes adds two or zero. The bit-flipping instruction normally flips the
low-order bit, but it sometimes flips the next higher bit or no bit. The shift-left
instruction normally shifts all bits one bit to the left, but it sometimes shifts left
by two bits, or not at all. In this way, the behavior of the Tierran instructions is
probabilistic, not fully deterministic.

It turns out that bit-flipping mutations and flaws in instructions are not neces-
sary to generate genetic change and evolution, once the community reaches a certain
state of complexity. Genetic parasites evolve which are sloppy replicators, and have
the effect of moving pieces of code around between creatures, causing rather mas-
sive rearrangements of the genomes. The mechanism of this ad hoc sexuality has
not been worked out, but is likely due to the parasites’ inability to discriminate
between live, dead, or embryonic code.

Mutations result in the appearance of new genotypes, which are watched by an
automated genebank manager. In one implementation of the manager, when new
genotypes replicate twice, producing a genetically identical offspring at least once,
they are given a unique name and saved to disk. Each genotype name contains two
parts, a number, and a three-letter code. The number represents the number of
instructions in the genome. The three-letter code is used as a base 26 numbering
system for assigning a unique label to each genotype in a size class. The first
genotype to appear in a size class is assigned the label aaa, the second is assigned
the label aab, and so on. Thus the ancestor is named 80aaa, and the first mutant
of size 80 is named 80aab. The first parasite of size 45 is named 45aaa.

The genebanker saves some additional information with each genome: the geno-
type name of its immediate ancestor which makes possible the reconstruction of
the entire phylogeny; the time and date of origin; “metabolic” data including the
number of instructions executed in the first and second reproduction, the number
of errors generated in the first and second reproduction, and the number of in-
structions copied into the daughter cell in the first and second reproductions (see
Appendix C); some environmental parameters at the time of origin including the
search limit for addressing, and the slicer power, both of which affect selection for
size.

THE TIERRAN ANCESTOR

The Tierran language has been used to write a single self-replicating program which
is 80 instructions long. This program is referred to as the “ancestor,” or alternatively
as genotype 0080aaa (Figure 1). The ancestor is a minimal self-replicating algorithm
which was originally written for use during the debugging of the simulator. No
functionality was designed into the ancestor beyond the ability to self-replicate,

An Approach to the Synthesis of Life 381

nor was any specific evolutionary potential designed in. The commented Tierran
assembler and machine code for this program is presented in Appendix C.

The ancestor examines itself to determine where in memory it begins and ends.
The ancestor’s beginning is marked with the four no-operation template: 1 11 1,
and its ending is marked with 1 1 1 0. The ancestor locates its beginning with
the five instructions: ADRB, NOP_0, NOP_0, NOP_0, and NOP_0. This series of

ANCESTOR PARASITE HYPER-PARASITE
1 (EE] 1111 T
———3¢|[-exen sell exan ——— 3e|{-exan
find 0000 [svert] -} bx Itnd 0000 (astert) -) bx [tnd 0000 |atert] -7 bx
Iiad 0001 [end] -7 ex find 0001 [end] -0 Bx find 0001 |end] -7 ex
calculate size =7 ex celculate size -3 18% calculale s1ze Y ox
T .
1101 Q—] 1o e b4
/—reprnﬂucllon |dﬂ?—\ | reproduction loop —reproeduction laop
allocate daushler =) ax allocate deughter -0 ex #llocete deuphter -} ox
—|call 0OLL 1:n?y procedure | eall 001} [eopy procedure| eall 0011 | copy procedure || —
/-Il—) cell diviaton > cell diviaion — cell divisten
' Junp 0010 —~ juap 0010 — | Junpb 0000 —
l [110 i
| = 1100 < [1100
o copy procedur:—-\ copy procedure
aave reglaters to steck 1010 <
— 1010 move |bx| =7 lex!]
move |bx| <} |ex| | decrenent tx
decrement cx Pt thex == 0 juapb 1100
‘ Il ex == 0 Juap 0100 j tncrement ax 4 bx
fncrenent ox 4 bx |umpb 0101 =
‘L Junp 0101 J 1o
101 &
restore reglaters
N — * return
1110

FIGURE 1 Metabolic flow chart for the ancestor, parasite, hyper-parasite, and their
interactions: ax, bx and cx refer to CPU registers where location and size information
are stored. [ax] and [bx] refer to locations in the soup indicated by the values in the
ax and bx registers. Patterns such as 1101 are complementary templates used for
addressing. Arrows outside of boxes indicate jumps in the flow of execution of the
programs. The dotted-line arrows indicate flow of execution between creatures. The
parasite lacks the copy procedure; however, if it is within the search limit of the copy
procedure of a host, it can locate, call, and execute that procedure, thereby obtaining
the information needed to complete its replication. The host is not adversely affected by
this informational parasitism, except through competition with the parasite, which is a
superior competitor. Note that the parasite calls the copy procedure of its host with the
expectation that control will return to the parasite when the copy procedure returns.
However, the hyper-parasite jumps out of the copy procedure rather than returning,
thereby seizing control from the parasite. It then proceeds to reset the CPU registers
of the parasite with the location and size of the hyper-parasite, causing the parasite to
replicate the hyper-parasite genome thereafter.

382 Thomas S. Ray

instructions causes the system to search backwards from the ADRB instruction for
a template complementary to the four NOP_(instructions, and to place the address
of the complementary template (the beginning) in the ax register of the CPU (see
Appendix A). A similar method is used to locate the end.

Having determined the address of its beginning and its end, it subtracts the two
to calculate its size, and allocates a block of memory of this size for a daughter cell. It
then calls the copy procedure which copies the entire genome into the daughter-cell
memory, one instruction at a time. The beginning of the copy procedure is marked
by the four no-operation template: 11 0 0. Therefore, the call to the copy procedure
is accomplished with the five instructions: CALL, NOP_0, NOP_0, NOP_1, and
NOP_L.

When the genome has been copied, it executes the DIVIDE instruction, which
causes the creature to lose write privileges on the daughter-cell memory, and gives
an instruction pointer to the daughter cell (it also enters the daughter cell into
the slicer and reaper queues). After this first replication, the mother cell does not
examine itself again; it proceeds directly to the allocation of another daughter cell,
then the copy procedure is followed by cell division, in an endless loop.

Fourty-eight of the 80 instructions in the ancestor are no-operations. Groups of
four no-operation instructions are used as complementary templates to mark twelve
sites for internal addressing, so that the creature can locate its beginning and end,
call the copy procedure, and mark addresses for loops and jumps in the code, etc.
The functions of these templates are commented in the listing in Appendix C.

RESULTS
GENERAL BEHAVIOR OF THE SYSTEM

Evolutionary runs of the simulator are begun by inoculating the soup of 60,000
instructions with a single individual of the 80 instruction ancestral genotype. The
passage of time in a run is measured in terms of how many Tierran instructions
have been executed by the simulator. Most software development work has been
carried out on a Toshiba 5200/100 laptop computer with an 80386 processor and
an 80387 math co-processor operating at 20 Mhz. This machine executes over 12
million Tierran instructions per hour. Long evolutionary runs are conducted on
mini and mainframe computers which execute about 1 million Tierran instructions
per minute.

The original ancestral cell which inoculates the soup executes 839 instructions
in its first replication, and 813 for each additional replication. The initial cell and
its replicating daughters rapidly fill the soup memory to the threshold level of 80%
which starts the reaper. Typically, the system executes about 400,000 instructions
in filling up the soup with about 375 individuals of size 80 (and their gestating
daughter cells). Once the reaper begins, the memory remains roughly 80% filled
with creatures for the remainder of the run.

An Approach to the Synthesis of Life 383

Once the soup is full, individuals are initially short lived, generally reproducing
only once before dying; thus, individuals turn over very rapidly. More slowly, there
appear new genotypes of size 80, and then new size classes. There are changes in
the genetic composition of each size class, as new mutants appear, some of which
increase significantly in frequency, sometimes replacing the original genotype. The
size classes which dominate the community also change through time, as new size
classes appear (see below), some of which competitively exclude sizes present earlier.
Once the community becomes diverse, there is a greater variance in the longevity
and fecundity of individuals.

In addition to an increase in the raw diversity of genotypes and genome sizes,
there is an increase in the ecological diversity. Obligate commensal parasites evolve,
which are not capable of self-replication in isolated culture, but which can repli-
cate when cultured with normal (self-replicating) creatures. These parasites execute
some parts of the code of their hosts, but cause them no direct harm, except as com-
petitors. Some potential hosts have evolved immunity to the parasites, and some
parasites have evolved to circumvent this immunity.

In addition, facultative hyper-parasites have evolved, which can self-replicate
in isolated culture, but when subjected to parasitism, subvert the parasites energy
metabolism to augment their own reproduction. Hyper-parasites drive parasites to
extinction, resulting in complete domination of the communities. The relatively high
degrees of genetic relatedness within the hyper-parasite-dominated communities
leads to the evolution of sociality in the sense of creatures that can only replicate
when they occur in aggregations. These social aggregations are then invaded by
hyper-hyper-parasite cheaters.

Mutations and the ensuing replication errors lead to an increasing diversity of
sizes and genotypes of self-replicating creatures in the soup. Within the first 100
million instructions of elapsed time, the soup evolves to a state in which about
a dozen more-or-less persistent size classes coexist. The relative abundances and
specific list of the size classes varies over time. Each size class consists of a number
of distinet genotypes which also vary over time.

EVOLUTION
MICRO-EVOLUTION

If there were no mutations at the outset of the run, there would be no evolution.
However, the bits flipped as a result of copy errors or background mutations result in
creatures whose list of 80 instructions (genotype) differs from the ancestor, usually
by a single bit difference in a single instruction.

Mutations, in and of themselves, cannot result in a change in the size of a
creature, they can only alter the instructions in its genome. However, by altering
the genotype, mutations may affect the process whereby the creature examines itself

384 Thomas S. Ray

and calculates its size, potentially causing it to produce an offspring that differs in
size from itself.

Four out of the five possible mutations in a no-operation instruction convert
it into another kind of instruction, while one out of five converts it into the com-
plementary no-operation. Therefore, 80% of mutations in templates destroy the
template, while one in five alters the template pattern. An altered template may
cause the creature to make mistakes in self-examination, procedure calls, or looping
or jumps of the instruction pointer, all of which use templates for addressing.

PARASITES An example of the kind of error that can result from a mutation in a
template is a mutation of the low-order bit of instruction 42 of the ancestor (Ap-
pendix C). Instruction 42 is a NOP_(Q, the third component of the copy procedure
template. A mutation in the low-order bit would convert it into NOP_1, thus chang-
ing the template from 1 1 0 0 to: 1 1 1 0. This would then be recognized as the
template used to mark the end of the creature, rather than the copy procedure.

A creature born with a mutation in the low-order bit of instruction 42 would
calculate its size as 45. It would allocate a daughter cell of size 45 and copy only
instructions 0 through 44 into the daughter cell. The daughter cell then, would not
include the copy procedure. This daughter genotype, consisting of 45 instructions,
1s named 0045aaa.

Genotype 0045aaa (Figure 1) is not able to self-replicate in isolated culture.
However, the semi-permeable membrane of memory allocation only protects write
privileges. Creatures may match templates with code in the allocated memory of
other creatures, and may even execute that code. Therefore, if creature 0045aaa is
grown in mixed culture with 0080aaa, when it attempts to call the copy procedure,
it will not find the template within its own genome, but if it is within the search
limit (generally set at 200-400 instructions) of the copy procedure of a creature of
genotype 0080aaa, it will match templates, and send its instruction pointer to the
copy code of 0080aaa. Thus a parasitic relationship is established (see ECOLOGY
below). Typically, parasites begin to emerge within the first few million instructions
of elapsed time in a run.

IMMUNITY TO PARASITES At least some of the size 79 genotypes demonstrate some
measure of resistance to parasites. If genotype 45aaa is introduced into a soup,
flanked on each side with one individual of genotype 0079aab, 0045aaa will initially
reproduce somewhat, but will be quickly eliminated from the soup. When the same
experiment is conducted with 0045aaa and the ancestor, they enter a stable cycle
in which both genotypes coexist indefinitely. Freely evolving systems have been
observed to become dominated by size T9 genotypes for long periods, during which
parasitic genotypes repeatedly appear, but fail to invade.

An Approach to the Synthesis of Life 385

CIRCUMVENTION OF IMMUNITY TO PARASITES Occasionally these evolving sys-
tems dominated by size 79 were successfully invaded by parasites of size 51. When
the immune genotype 0079aab was tested with 005laao (a direct, one-step de-
scendant of 0045aaa in which instruction 39 is replaced by an insertion of seven
instructions of unknown origin), they were found to enter a stable cycle. Evidently
0051aao has evolved some way to circumvent the immunity to parasites possessed
by 0079aab. The 14 genotypes 005laaa through 005laan were also tested with
0079aab, and none were able to invade.

HYPER-PARASITES Hyper-parasites have been discovered, (e.g., 0080gai, which dif-
fers by 19 instructions from the ancestor, Figure 1). Their ability to subvert the
energy metabolism of parasites is based on two changes. The copy procedure does
not return, but jumps back directly to the proper address of the reproduction loop.
In this way it effectively seizes the instruction pointer from the parasite. However
it is another change which delivers the coup de grace: after each reproduction, the
hyper-parasite re-examines itself, resetting the bx register with its location and
the cx register with its size. After the instruction pointer of the parasite passes
through this code, the CPU of the parasite contains the location and size of the
hyper-parasite and the parasite thereafter replicates the hyper-parasite genome.

SOCIAL HYPER-PARASITES Hyper-parasites drive the parasites to extinction. This
results in a community with a relatively high level of genetic uniformity, and there-
fore high genetic relationship between individuals in the community. These are the
conditions that support the evolution of sociality, and social hyper-parasites soon
dominate the community. Social hyper-parasites (Figure 2) appear in the 61 in-
struction size class. For example, 0061lacg is social in the sense that it can only
self-replicate when it occurs in aggregations. When it jumps back to the code for
self-examination, it jumps to a template that occurs at the end rather than the
beginning of its genome. If the creature is flanked by a similar genome, the jump
will find the target template in the tail of the neighbor, and execution will then pass
into the beginning of the active creature’s genome. The algorithm will fail unless
a similar genome occurs just before the active creature in memory. Neighboring
creatures cooperate by catching and passing on jumps of the instruction pointer.
It appears that the selection pressure for the evolution of sociality is that it
facilitates size reduction. The social species are 24% smaller than the ancestor. They
have achieved this size reduction in part by shrinking their templates from four
instructions to three instructions. This means that there are only eight templates
available to them, and catching each others jumps allows them to deal with some of
the consequences of this limitation as well as to make dual use of some templates.

386 Thomas S. Ray

SOCIAL HYPER-PARASITES

iex == 0 |umpk 110
incresenl ox & bx
Junph D101

i

i
1o
If-exen
P e —
find 001 |stert] - bx
find 000 |end| -) ax
)

ealculate alze €x

o~ reproduction]unp —
allocete deughter -) ax

cell 001 [copy procedure]
cell division

jupb 010

1100
" copy procedure =
1010

move |bxl =) |ax|
decrement cx
1 ex == 0 Junph 110
Incremenl ax & bx

Junpb 0101

SOCTAL HYPER-FARASITES
AND CHEATER
ey =2 0 Juspb 110
Inerement Bx & by
Jumpb 0101

1
211

R
1]

sell-exan
fiad 001 [stert|
[ind 000 [end]
calculate alze

¥ bx
) ex
=M

reproducttan loop

sllocete daughter - ax

call 0011 |CBP5| pracedure |
cell diviston

Jusp 111

I
sell-exen

find 001 |start |

! bx
fend 000 |end| -2
celculate s1ze

BX

“toex

4

reproduction loop =y

allocate daughler - oex

1o
u
decrement cx

copy procedure ——
!
I ex == 0 Jumpb 110

eall 001 Icopy pracedure |
cell division
Juapb 010 ‘
a1a
ove [bxl| -} lax|
Increment ox & bx
Juapb 0101 ~
11

FIGURE 2 Metabolic flow chart for social hyper-parasites, their associated hyper-
hyper-parasite cheaters, and their interactions. Symbols are as described for Figure
1. Horizontal dashed lines indicate the boundaries between individual creatures. On
both the left and right, above the dashed line at the top of the figure is the lowermost
fragment of a social hyper-parasite. Note (on the left) that neighboring social hyper-
parasites cooperate in returning the flow of execution to the beginning of the creature
for self-re-examination. Execution jumps back to the end of the creature above, but
then falls off the end of the creature without executing any instructions of consequence,
and enters the top of the creature below. On the right, a cheater is inserted between
the two social-hyper-parasites. The cheater captures control of execution when it
passes between the social individuals. It sets the CPU registers with its own location
and size, and then skips over the self-examination step when it returns control of
execution to the social creature below.

An Approach to the Synthesis of Life 387

CHEATERS: HYPER-HYPER-PARASITES The cooperative social system of hyper-
parasites is subject to cheating, and is eventually invaded by hyper-hyper-parasites
(Figure 2). These cheaters (e.g., 0027aab) position themselves between aggregating
hyper-parasites so that when the instruction pointer is passed between them, they
capture it.

A NOVEL SELF-EXAMINATION All creatures discussed thus far mark their beginning
and end with templates. They then locate the addresses of the two templates and
determine their genome size by subtracting them. In one run, creatures evolved
without a template marking their end. These creatures located the address of the
template marking their beginning, and then the address of a template in the middle
of their genome. These two addresses were then subtracted to calculate half of their
size, and this value was multiplied by two (by shifting left) to calculate their full
size.

MACRO-EVOLUTION

When the simulator is run over long periods of time, hundreds of millions or bil-
lions of instructions, various patterns emerge. Under selection for small sizes, there
is a proliferation of small parasites and a rather interesting ecology (see below). Se-
lection for large creatures has usually lead to continuous incrementally increasing
sizes (but not to a trivial concatenation of creatures end-to-end) until a plateau in
the upper hundreds is reached. In one run, selection for large size lead to appar-
ently open-ended size increase, evolving genomes larger than 23,000 instructions in
length. This evolutionary pattern might be described as phyletic gradualism.

The most thoroughly studied case for long runs is where selection, as determined
by the slicer function, is size neutral. The longest runs to date (as much as 2.86
billion Tierran instructions) have been in a size-neutral environment, with a search
limit of 10,000, which would allow large creatures to evolve if there were some
algorithmic advantage to be gained from larger size. These long runs illustrate a
pattern which could be described as periods of stasis punctuated by periods of
rapid evolutionary change, which appears to parallel the pattern of punctuated
equilibrium described by Eldredge and Gould?! and Gould and Eldredge.*

Initially these communities are dominated by creatures with genome sizes in
the 80s. This represents a period of relative stasis, which has lasted from 178 million
to 1.44 billion instructions in the several long runs conducted to date. The systems
then very abruptly (in a span of 1 or 2 million instructions) evolve into communi-
ties dominated by sizes ranging from about 400 to about 800. These communities
have not yet been seen to evolve into communities dominated by either smaller or
substantially larger size ranges.

Thomas S. Ray

388

——

EELL
G692
L29L
B6GL
88¥L
09¥.L
8G¥L
L GehL
1€€L
£6eL
84T.
1,69
1069
0%99
6269
0€€9
¥109
9009
8R6S
BR/RC
pace
6Ces
eres

ey —
w

e B B B B B e B o Bt (e TR R e T R e e

]

I e M B =

QOO N ——~ WD D D —

O o = = 0N D D
—

€840
18¢€0
81¢€0
8960
€690
2zq0
61€0
€1¢0
1150
€670
L8%0
98%0
48%0
V%0
€810
aLv0
49%0
96%0
S¥y0
Prr0
EVY0
v
810

— e S O I~ o e o 6 — —

=

WO N o I~

0620
&veo
a0
0¥c0
8€20
9€2c0
aeeo
1620
120
92¢0
£220
0220
6120
8120
¥ieo
€120
[Ardl
1120
010
6020
8020
L020
G0co

(47
0y

66
g1
1L
8
£81
9%
181
bLl
LIv1
622E
9€8
8€6
0L¢

Lot B Bt B B B e
[~

¢L10
[L10
0L10
6910
8910
2910
9910
G910
P9T10
€910
Z910
1910
0910
6ST0
8410
L6810
9¢10
Ge10
Pe10
€C10
gs10
1610
0ST0

g
01
61
I
8

4

8

€
61
82
az
L2
¢9
a9
LL
L1
66
EL1
(43¢
[ie
Ive
192
¢9¢

PI10
€110
¢r1o
IT10
0110
6010
8010
L010
9010
G010
vOT10
€010
¢010
1010
0010
6600
8600
1600
9600
4600
7600
£600
Z600

o= 00 00 ¢ — M

~—
NI D= H o0 MM~ NN

—

L

—

€900
2900
1900
0900
6S00
800
L5600
9¢00
6600
7600
€200
@s00
100
000
6700
8100
L¥00
av00
ar00
¥¥00
€r00
%00
¥€00

‘sadAjousb G/2‘6g ‘sozis GOE 'sSBo 8zIs eyl jo sedAloush
Bupeoyidei-jjes 4o Jequinu si uwnjoo 1yBl ‘sSelO 82IS S| UWN|OD Yo ‘Hueqsush B} Ul SBSSE|D 8ZIS JO Siequinu Jo a|qel | JgVL

389

An Approach to the Synthesis of Life

N = M = D NN~ MO E 10—~~~

—

o

]

PETES
GEG8T
9GELT
GGEIT
LTLGT
¢leel
00611
99€¢T1
9L90T
66201
8966
a196
¥946
L0%6
[106
8168
1668
049.8
6¥98
90¥8
Gov8
99€8
0ves
Z808
a16L
098.
89LL

HrEA A ON T O MNO—~ 0~~~ =N — N~ 10

—

—

L6919
1016
5444
690¢
1L9¢
L19¢
g19e
99¢¢
SPIT
1€91
G9¢T
Geel
(4431
p6el
9811
911l
L10T
9101
9001
0¥60
8880
1880
€180
F080
1810
6890
£890
0090

L B B B B B B B B B o IR IR Bt B B Ve B R I T B B T T B B B B B B |

™

™

]

—

91%0
Z1v0
[1%0
L0¥0
10¥0
8860
98¢0
zegeo
1¢€0
£VE0
Zyeo
0€€0
aeeo
[ceo
0z€0
61€0
8160
91€0
VI€0
ARl
90€0
¥8¢0
6920
89¢0
6920
1920
0920
1620

8

Ge

61
11

al
0z
I1
1
La
91
&1
LE1
(44

28

¥020
£020
1020
0020
6610
8610
L6710
9610
G610
¥610
€610
Z610
0610
8810
1810
9810
G810
¥810
Zs810
1810
0810
6110
8L10
LL10
9.10
GL10
¥LIO0
€L10

UM MM MN O~ O 0D NP~ N WO o

6¥10
9¥10
br10
&v10
I¥10
6€10
8€T0
LE10
9€T10
GE10
¥e10
ge10
¢e10
LET0
0€T0
LZ10
9¢10
Gzr1o
vaio
€210
Al
110
0210
6110
8110
L1710
9110
g110

4524
£ve
6V ¥
L1G
V6
106
[€91
¢L91
988
V8E
06¢
66€L
0¢8
60¥

— o = N =) = 2

1600
0600
6800
8800
1800
9800
G800
¥800
€800
ag800
[800
0800
6,00
8L00
L200
9200
6100
¥L00
€200
¢L00
1L00
0L00
6900
8900
1900
9900
G900
¥900

390 Thomas S. Ray

The communities of creatures in the 400 to 800 size range also show a long-
term pattern of punctuated equilibrium. These communities regularly come to be
dominated by one or two size classes, and remain in that condition for long periods
of time. However, they inevitably break out of that stasis and enter a period where
no size class dominates. These periods of rapid evolutionary change may be very
chaotic. Close observations indicate that at least at some of these times, no geno-
types breed true. Many self-replicating genotypes will coexist in the soup at these
times, but at the most chaotic times, none will produce offspring which are even
their same size. Eventually the system will settle down to another period of stasis
dominated by one or a few size classes which breed true.

Two communities have been observed to die after long periods. In one com-
munity, a chaotic period led to a situation where only a few replicating creatures
were left in the soup, and these were producing sterile offspring. When these last
replicating creatures died (presumably from an accumulation of mutations), the
community was dead. In these runs, the mutation rate was not lowered during the
run, while the average genome size increased by an order of magnitude until it
approached the average mutation rate. Both communities died shortly after the
dominant size class moved from the 400 range to the 700 to 1400 range. Under
these circumstances it is probably difficult for any genome to breed true, and the
genomes may simply have “melted.” Another community died abruptly when the
mutation rate was raised to a high level.

DIVERSITY

Most observations on the diversity of Tierran creatures have been based on the
diversity of size classes. Creatures of different sizes are clearly genetically different,
as their genomes are of different sizes. Different sized creatures would have some
difficulty engaging in recombination if they were sexual; thus, it is likely that they
would be different species. In a run of 526 million instructions, 366 size classes were
generated, 93 of which achieved abundances of five or more individuals. In a run
of 2.56 billion instructions, 1180 size classes were generated, 367 of which achieved
abundances of five or more.

Each size class consists of a number of distinct genotypes which also vary over
time. There exists the potential for great genetic diversity within a size class.
There are 3250 distinct genotypes of size 80, but how many of those are viable
self-replicating creatures? This question remains unanswered; however, some infor-
mation has been gathered through the use of the automated genebank manager.

In several days of running the genebanker, over 29,000 self-replicating genotypes
of over 300 size classes accumulated. The size classes and the number of unique
genotypes banked for each size are listed in Table 1. The genotypes saved to disk
can be used to inoculate new soups individually, or collections of these banked

An Approach to the Synthesis of Life 391

genotypes may be used to assemble “ecological communities.” In “ecological” runs,
the mutation rates can be set to zero in order to inhibit evolution.

ECOLOGY

The only communities whose ecology has been explored in detail are those that
operate under selection for small sizes. These communities generally include a large
number of parasites, which do not have functional copy procedures, and which
execute the copy procedures of other creatures within the search limit. In exploring
ecological interactions, the mutation rate is set at zero, which effectively throws the
simulation into ecological time by stopping evolution. When parasites are present,
it is also necessary to stipulate that creatures must breed true, since parasites have
a tendency to scramble genomes, leading to evolution in the absence of mutation.

0045aaa is a “metabolic parasite.” Its genome does not include the copy pro-
cedure; however, it executes the copy procedure code of a normal host, such as the
ancestor. In an environment favoring small creatures, 0045aaa has a competitive
advantage over the ancestor; however, the relationship is density dependent. When
the hosts become scarce, most of the parasites are not within the search limit of a
copy procedure, and are not able to reproduce. Their calls to the copy procedure
fail and generate errors, causing them to rise to the top of the reaper queue and
die. When the parasites die off, the host population rebounds. Hosts and parasites
cultured together demonstrate Lotka-Volterra population cycling.3%%%%4

A number of experiments have been conducted to explore the factors affecting
diversity of size classes in these communities. Competitive exclusion trials were
conducted with a series of self-replicating (non-parasitic) genotypes of different size
classes. The experimental soups were initially inoculated with one individual of
each size. A genotype of size 79 was tested against a genotype of size 80, and then
against successively larger size classes. The interactions were observed by plotting
the population of the size 79 class on the z axis, and the population of the other
size class on the y axis. Sizes 79 and 80 were found to be competitively matched
such that neither was eliminated from the soup. They quickly entered a stable cycle,
which exactly repeated a small orbit. The same general pattern was found in the
interaction between sizes 79 and 81.

When size 79 was tested against size 82, they initially entered a stable cycle,
but after about 4 million instructions, they shook out of stability and the trajectory
became chaotic with an attractor that was symmetric about the diagonal (neither
size showed any advantage). This pattern was repeated for the next several size
classes, until size 90, where a marked asymmetry of the chaotic attractor was evi-
dent, favoring size 79. The run of size 79 against size 93 showed a brief stable period
of about a million instructions, which then moved to a chaotic phase without an
attractor, which spiraled slowly down until size 93 became extinct, after an elapsed
time of about 6 million instructions.

An interesting exception to this pattern was the interaction between size 79
and size 89. Size 89 is considered to be a “metabolic cripple,” because although it

392 Thomas S. Ray

is capable of self-replicating, it executes about 40% more instructions to replicate
than normal. It was eliminated in competition with size 79, with no loops in the
trajectory, after an elapsed time of under 1 million instructions.

In an experiment to determine the effects of the presence of parasites on com-
munity diversity, a community consisting of 20 size classes of hosts was created
and allowed to run for 30 million instructions, at which time only the eight small-
est size classes remained. The same community was then regenerated, but a single
genotype (0045aaa) of parasite was also introduced. After 30 million instructions,
16 size classes remained, including the parasite. This seems to be an example of a
“keystone” parasite effect.4!

SYMBIONTS
1111 1111
self-exan sell-exam
[ind 0000 start) -) bx find 0000 [start) -) bx
find 000] ([end) - ax find 0001 (end] -) ax
calculale size -¥-Bx calculatle size =% %
Jump 0010 Jump 0010
1100 - > 1101]
copy procedure —— reproduct fon loop ‘
save reglsters lo stack allocate daughlcr - ax
—> 1010 call 0011 (copy procedure | ’
move [bx| -) |ax| > cell division |
decrement cx Jumph 0010 ==
i Il ex == 0 Jump 0100 ~\ 110
l Increment 8x & by |
= Jumpb 0101 |
1011 i
reslore rceistm's
__ relurn)
1110

FIGURE 3 Metabolic flow chart for obligate symbionts and their interactions. Symbols
are as described for Figure 1. Neither creature is able to self-replicate in isolation.
However, when cultured together, each is able to replicate by using information
provided by the other.

An Approach to the Synthesis of Life 393

Symbiotic relationships are also possible. The ancestor was manually dissected
into two creatures, one of size 46 which contained only the code for self-examination
and the copy loop, and one of size 64 which contained only the code for self-
examination and the copy procedure (Figure 3). Neither could replicate when cul-
tured alone, but when cultured together, they both replicated, forming a stable
mutualistic relationship. It is not known if such relationships have evolved sponta-
neously.

DISCUSSION

The “physical” environment presented by the simulator is quite simple, consisting
of the energy resource (CPU time) doled out rather uniformly by the time slicer,
and memory space which is completely uniform and always available. In light of the
nature of the physical environment, the implicit fitness function would presumably
favor the evolution of creatures which are able to replicate with less CPU time, and
this does, in fact, occur. However, much of the evolution in the system consists of
the creatures discovering ways to exploit one another. The creatures invent their
own fitness functions through adaptation to their biotic environment.

Parasites do not contain the complete code for self-replication; thus, they uti-
lize other creatures for the information contained in their genomes. Hyper-parasites
exploit parasites in order to increase the amount of CPU time devoted to the repli-
cation of their own genomes; thus, hyper-parasites utilize other creatures for the en-
ergy resources that they possess. These ecological interactions are not programmed
into the system, but emerge spontaneously as the creatures discover each other and
invent their own games.

Evolutionary theory suggests that adaptation to the biotic environment (other
organisms) rather than to the physical environment is the primary force driving
the auto-catalytic diversification of organisms.*® It is encouraging to discover that
the process has already begun in the Tierran world. It is worth noting that the
results presented here are based on evolution of the first creature that I designed,
written in the first instruction set that I designed. Comparison to the creatures that
have evolved shows that the one I designed is not a particularly clever one. Also,
the instruction set that the creatures are based on is certainly not very powerful
(apart from those special features incorporated to enhance its evolvability). It would
appear then that it is rather easy to create life. Evidently, virtual life is out there,
waiting for us to provide environments in which it may evolve.

394 Thomas S. Ray

EMERGENCE

Cariani® has suggested a methodology by which emergence can be detected. His
analysis is described as “emergence-relative-to-a-model,” where “the model... con-
stitutes the observer’s expectations of how the system will behave in the future.”
If the system evolves such that the model no longer describes the system, we have
emergence.

Cariani recognizes three types of emergence, in semiotic terms: syntactic, se-
mantic, and pragmatic. Syntactic operations are those of computation (symbolic).
Semantic operations are those of measurement (e.g., sense perception) and con-
trol (e.g., effectors), because they “determine the relation of the symbols in the
computational part of the device to the world at large.” Pragmatic (“intentional”)
operations are those that are “performance-measuring,” and, hence “the criteria
which control the selection.”

Cariani has developed this analysis in the context of robotics, and considers that
the semantic operations should act at the interface between the symbolic (compu-
tational) and the nonsymbolic (real physical world). I can not apply his analysis
in precisely this way to my simulation, because there is no connection between the
Tierran world and the real physical world. I have created a virtual universe that
is fully self-contained, within the computer; thus, I must apply his analysis in this
context.

In the Tierran world, symbolic operations (syntactic), computations, take place
in the CPU. The “nonsymbolic,” “real physical world” is the soup (RAM) where the
creatures reside. The measurement (semantic) operations are those that involve the
location of templates; the effector operations are the copying of instructions within
the soup, and the allocation of memory (cells). Fitness functions (pragmatic) are
implicit, and are determined by the creatures themselves because they must effect
their own replication.

Any program which is self-modifying can show syntactic emergence. As long
as the organization of the executable code changes, we have syntactic emergence.
This occurs in the Tierran world, as the executable genetic code of the creatures
evolves.

Semantic emergence is more difficult to achieve, as it requires the appearance
of some new meaning in the system. This is found in the Tierran world in the
evolution of templates and their meanings. When a creature locates a template,
which has a physical manifestation in the “real world” of the soup, the location of
the template appears in the CPU in the form of a symbol representing its address
in the soup. For example, the beginning and end of the ancestor are each marked
by templates. That one “means” beginning and the other “means” end is apparent
from the computation made on the symbols for them in the CPU: the two are
subtracted to calculate the size of the creature, and copying of the genome starts
at the beginning address. Through evolution, a class of creatures appeared which
did not locate a template at their end, but rather one in their center. That the new
template “means” center to these creatures is again apparent from the computations
made on its associated symbol in the CPU: the beginning address is subtracted

An Approach to the Synthesis of Life 395

from the center address, the difference is then multiplied by two to calculate the
size.

Pragmatic emergence is considered “higher” by Cariani, and certainly it is the
most difficult to achieve, because it requires that the system evolve new fitness
functions. In living systems, fitness functions always reduce to: genotypes which
leave a greater number of their genes in future generations will increase in fre-
quency relative to other genotypes and thus have a higher fitness. This is a nearly
tautological observation, but tautology is avoided in that the fitness landscape is
shaped by specific adaptations that facilitate passing genes on.

For a precambrian marine algae living before the appearance of herbivores,
the fitness landscape consists, in part, of a multi-dimensional space of metabolic
parameter affecting the efficiency of the conversion of sun light into useable energy,
and the use of that energy in obtaining nutrients and converting them into new
cells. Regions of this metabolic phase space that yield a greater efficiency at these
operations also have higher associated fitnesses.

In order for pragmatic emergence to occur, the fitness landscape must be ex-
panded to include new realms. For example, if a variant genotype of algae engulfs
other algae, and thereby achieves a new mechanism of obtaining energy, the fitness
landscape expands to include the parameters of structure and metabolism that fa-
cilitate the location, capture, and digestion of other cells. The fitness landscapes of
algae lacking these adaptations also become altered, as they now include the pa-
rameters of mechanisms to avoid being eaten. Pragmatic emergence occurs through
the acquisition of a new class of adaptation for enhancing passing genes on.

Pragmatic emergence occurs in the Tierran world as creatures which initially
do not interact, discover means to exploit one another, and in response, means to
avoid exploitation. The original fitness landscape of the ancestor consists only of the
efficiency parameters of the replication algorithm, in the context of the properties of
the reaper and slicer queues. When by chance, genotypes appear that exploit other
creatures, selection acts to perfect the mechanisms of exploitation, and mechanisms
of defense to that exploitation. The original fitness landscape was based only on
adaptations of the organism to its physical environment (the slicer and reaper). The
new fitness landscape retains those features, but adds to it adaptations to the biotic
environment, the other creatures. Because the fitness landscape includes an ever-
increasing realm of adaptations to other creatures which are themselves evolving,
it can facilitate an auto-catalytic increase in complexity and diversity of organisms.

In any computer model of evolution, the fitness functions are determined by
the entity responsible for the replication of individuals. In genetic algorithms and
most simulations, that entity is the simulator program; thus, the fitness function is
defined globally. In the Tierran world, that entity is the creatures themselves; thus,
the fitness function is defined locally by each creature in relation to its environment
(which includes the other creatures). It is for this reason that pragmatic emergence
occurs in the Tierran world.

In Tierra, the fitness functions are determined by the creatures themselves, and
evolve with the creatures. As Cariani states, “Such devices would not be useful for
accomplishing our purposes as their evaluatory criteria might well diverge from our

396 Thomas S. Ray

own over time.” This was the case from the outset in the Tierran world, because
the simulator never imposed any explicit selection on the creatures. They were not
expected to solve my problems, other than satisfying my passion to create life.

After describing how to recognize the various types of emergence, Cariani con-
cludes that Artificial Life cannot demonstrate emergence because of the fully de-
terministic and replicable nature of computer simulations. This conclusion does not
follow in any obvious way from the preceding discussions and does not seem to be
supported. Furthermore, I have never known “indeterminate” and “unreplicable”
to be considered as necessary qualities of life.

As a thought experiment, suppose that we connect a Geiger counter near a ra-
dioactive source to our computer, and use the interval between clicks to determine
the values in our random number generator. The resulting behavior of the simu-
lation would no longer be deterministic or repeatable. However, the results would
be the same, in any significant respect, to those obtained by using an algorithm to
select the random numbers. Determinism and repeatability are irrelevant to emer-
gence and to life. In fact, repeatability is a highly desirable quality of synthetic life
because it facilitates study of life’s properties.

SYNTHETIC BIOLOGY

One of the most uncanny of evolutionary phenomena is the ecological convergence
of biota living on different continents or in different epochs. When a lineage of
organisms undergoes an adaptive radiation (diversification), it leads to an array
of relatively stable ecological forms. The specific ecological forms are often rec-
ognizable from lineage to lineage. For example, among dinosaurs, the Pterosaur,
Triceratops, Tyrannosaurus, and Ichthyosaur are ecological parallels, respectively,
to the bat, rhinoceros, lion, and porpoise of modern mammals. Similarly, among
modern placental mammals, the gray wolf, flying squirrel, great anteater, and com-
mon mole are ecological parallels, respectively, to the Tasmanian wolf, honey glider,
banded anteater, and marsupial mole of the marsupial mammals of Australia.

Given these evidently powerful convergent forces, it should perhaps not be sur-
prising that as adaptive radiations proceed among digital organisms, we encounter
recognizable ecological forms, in spite of the fundamentally distinct physics and
chemistry on which they are based. Ideally, comparisons should be made among
organisms of comparable complexity. It may not be appropriate to compare viruses
to mammals. Unfortunately, the organic creatures most comparable to digital or-
ganisms, the RNA creatures, are no longer with us. Since digital organisms are
being compared to modern organic creatures of much greater complexity, ecological
comparisons must be made in the broadest of terms.

In describing the results, I have characterized classes of organisms such as hosts,
parasites, hyper-parasites, social, and cheaters. While these terms apply nicely to
digital organisms, it can be tricky to examine the parallels between digital and
organic organisms in detail. The parasites of this study cause no direct harm to
their host; however, they do compete with them for space. This is rather like a

An Approach to the Synthesis of Life 397

vine which depends on a tree for support, but which does not directly harm the
tree, except that the two must compete for light. The hyper-parasites of this study
are facultative and subvert the energy metabolism of their parasite victims without
killing them. I cannot think of an organic example that has all of these properties.
The carnivorous plant comes close in that it does not need the prey to survive, and
in that its prey may have approached the plant expecting to feed on it. However,
the prey of carnivorous plants are killed outright.

We are not in a position to make the most appropriate comparison, between
digital creatures and RNA creatures. However, we can apply what we have learned
from digital organisms, about the evolutionary properties of creatures at that level
of complexity, to our speculations about what the RNA world may have been like.
For example, once an RNA molecule fully capable of self-replication evolved, might
other RNA molecules lacking that capability have parasitized its replicatory func-
tion?

In studying the natural history of synthetic organisms, it is important to rec-
ognize that they have a distinct biology due to their non-organic nature. In order
to fully appreciate their biology, one must understand the stuff of which they are
made. To study the biology of creatures of the RNA world would require an under-
standing of organic chemistry and the properties of macro-molecules. To understand
the biology of digital organisms requires a knowledge of the properties of machine
instructions and machine language algorithms. However, to fully understand digi-
tal organisms, one must also have a knowledge of biological evolution and ecology.
Evolution and ecology are the domain of biologists and machine languages are the
domain of computer scientists. The knowledge chasm between biology and com-
puter science is likely to hinder progress in the field of Artificial Life for some time.
We need more individuals with a depth of knowledge in both areas in order to carry
out the work.

Trained biologists will tend to view synthetic life in the same terms that they
have come to know organic life. Having been trained as an ecologist and evolutionist,
I have seen in my synthetic communities, many of the ecological and evolutionary
properties that are well known from natural communities. Biologists trained in
other specialties will likely observe other familiar properties. It seems that what
we see is what we know. It is likely to take longer before we appreciate the unique
properties of these new life forms.

ARTIFICIAL LIFE AND BIOLOGICAL THEORY

The relationship between Artificial Life and biological theory is two-fold: (1) Given
that one of the main objectives of AL is to produce evolution leading to sponta-
neously increasing diversity and complexity, there exists a rich body of biological
theory that suggests factors that may contribute to that process; and (2) to the
extent that the underlying life processes are the same in AL and organic life, AL
models provide a new tool for experimental study of those processes, which can be

398 Thomas S. Ray

used to test biological theory that can not be tested by traditional experimental
and analytic techniques.4”

Furthermore, there exists a complementary relationship between biological the-
ory and the synthesis of life. Theory suggests how the synthesis can be achieved,
while application of the theory in the synthesis is a test of the theory. If theory
suggests that a certain factor will contribute to increasing diversity, then synthetic
systems can be run with and without that factor. The process of synthesis becomes
a test of the theory.

At the molecular level, there has been much discussion of the role of transpos-
able elements in evolution. It has been observed that most of the genome in eukary-
otes (perhaps 90%) originated from transposable elements, while in prokaryotes,
only a very small percentage of the genome originated through transposons.?%40:51
It can also be noted that the eukaryotes, not the prokaryotes, were involved in the
Cambrian explosion of diversity. It has been suggested that transposable elements
play a significant role in facilitating evolution.?®:3%50 These observations suggest
that it would be an interesting experiment to introduce transposable elements into
digital organisms.

The Cambrian explosion consisted of the origin, proliferation, and diversifica-
tion of macroscopic multi-cellular organisms. The origin and elaboration of multi-
cellularity was an integral component of the process. Buss’ provides a provocative
discussion of the evolution of multi-cellularity, and explores the consequences of
selection at the level of cell lines. From his discussion the following idea emerges
(although he does not explicitly state this idea, in fact, he proposes a sort of inverse
of this idea, p. 65): the transition from single to multi-celled existence involves the
extension of the control of gene regulation by the mother cell to successively more
generations of daughter cells. This is a concept which transcends the physical basis
of life, and could be profitably applied to synthetic life in order to generate an
analog of multi-cellularity.

The Red Queen hypothesis® suggests that in the face of a changing environ-
ment, organisms must evolve as fast as they can in order to simply maintain their
current state of adaptation. “In order to get anywhere you must run twice as fast
as that.”® A critical component of the environment for any organism is the other
living organisms with which it must interact. Given that the species that comprise
the environment are themselves evolving, the pace is set by the maximal rate that
any species may change through evolution, and it becomes very difficult to actually
get ahead. A maximal rate of evolution is required just to keep from falling behind.
This suggests that interactions with other evolving species provide the primary
driving force in evolution.

Much evolutionary theory deals with the role of biotic interactions in driving
evolution. For example, it is thought that these are of primary importance in the
maintenance of sex.®1%3637 Gtanley?® has suggested that the Cambrian explosion
was sparked by the appearance of the first organisms that ate other organisms.
These new herbivores enhanced diversity by preventing any single species of algae
from dominating and competitively excluding others. These kinds of biotic interac-
tions must be incorporated into synthetic life in order to move evolution.

An Approach to the Synthesis of Life 399

Similarly, many abiotic factors are known to contribute to determining the
diversity of ecological communities. Island biogeography theory considers how the
size, shape, distribution, fragmentation, and heterogeneity of habitats contribute to
community diversity.33 Various types of disturbance are also believed to significantly
affect diversity.2?** All of these factors may be introduced into synthetic life in an
effort to enhance the diversification of the evolving systems.

The examples just listed are a few of the many theories that suggest factors that
influence biological diversity. In the process of synthesizing increasingly complex
instances of life, we can incorporate and manipulate the states of these factors.
These manipulations, conducted for the purposes of advancing the synthesis, will
also constitute powerful tests of the theories.

EXTENDING THE MODEL

The approach to AL advocated in this work involves engineering over the first
3 billion years of life’s history to design complex evolvable artificial organisms,
and attempting to create the biological conditions that will set off a spontaneous
evolutionary process of increasing diversity and complexity of organisms. This is
a very difficult undertaking, because in the midst of the Cambrian explosion, life
had evolved to a level of complexity in which emergent properties existed at many
hierarchical levels: molecular, cellular, organismal, populational, and community.

In order to define an approach to the synthesis of life paralleling this historical
stage of organic life, we must examine each of the fundamental hierarchical levels,
abstract the principal biological properties from their physical representation, and
determine how they can be represented in our artificial media. The simulator pro-
gram determines not only the physics and chemistry of the virtual universe that
it creates, but the community ecology as well. We must tinker with the structure
of the simulator program in order to facilitate the existence of the appropriate
“molecular,” “cellular,” and “ecological” interactions to generate a spontaneously
increasing diversity and complexity.

The evolutionary potential of the present model can be greatly extended by
some modifications. In its present implementation, parasitic relationships evolve
rapidly, but predation involving the direct usurpation of space occupied by cells is
not possible. This could be facilitated by the introduction of a FREE (memory de-
allocation) instruction. However, it is unlikely that such predatory behavior would
be selected for because in the current system there is always free memory space
available: thus, there would be little to be gained through seizing space from another
creature. However, predation could be selected for by removing the reaper from the
system.

Perhaps a more interesting way to favor predatory-type interactions would be
to make instructions expensive. In the present implementation, there is no “conser-
vation of instructions,” because the MOV _IAB instruction creates a new copy of the
instruction being moved during self-replication. If the MOV_IAB instruction were
modified such that it obeyed a law of conservation, and left behind all zeros when

400 Thomas S. Ray

it moved an instruction, then instructions would not be so cheap. Creatures could
be allowed to synthesize instructions through a series of bit flipping and shifting
operations, which would make instructions “metabolically” costly. Under such cir-
cumstance, a soup of “autotrophs” which synthesize all of their instructions could be
invaded by a predatory creature which kills other creatures to obtain instructions.

Additional richness could be introduced to the model by modifying the way
that CPU time is allocated. Rather than using a circular queue, creatures could
deploy special arrays of instructions or bit patterns (analogous to chlorophyll) which
capture potential CPU time packets raining like photons onto the soup. In addition,
with instructions being synthesized through bit flipping and shifting operations,
each instruction could be considered to have a “potential time” (i.e., potential
energy) value which is proportional to its content of one bits. Instructions rich in
ones could be used as time (energy) storage “molecules” which could be metabolized
when needed by converting the one bits to zeros to release the stored CPU time.
The introduction of such an “informational metabolism” would open the way for
all sorts of evolution involving the exploitation of one organism by another.

Separation of the genotype from the phenotype would allow the model to move
beyond the parallel to the RNA world into a parallel of the DNA-RNA-protein
stage of evolution. Storage of the genetic information in relatively passive informa-
tional structures, which are then translated into the “metabolically active” machine
instructions would facilitate evolution of development, sexuality, and transposons.
These features would contribute greatly to the evolutionary potential of the model.

These enhancements of the model represent the current directions of my con-
tinuing efforts in this area, in addition to using the existing model to further test
ecological and evolutionary theory.

ACKNOWLEDGMENT

I thank Dan Chester, Robert Eisenberg, Doyne Farmer, Walter Fontana, Stephanie
Forrest, Chris Langton, Stephen Pope, and Steen Rasmussen, for their discussions
or readings of the manuscripts. Contribution No. 142 from the Ecology Program,
School of Life and Health Sciences, University of Delaware.

An Approach to the Synthesis of Life 401

APPENDIX A

Structure definition to implement the Tierra virtual CPU. The source code or exe-
cutables for the Tierra Simulator can be obtained by contacting the author by mail
(emial or snail mail).

struct cpu { /* structure for registers of virtual cpu */
int ax; /* address register */
int bx; /* address register */
int c¢x; /#* numerical register */
int dx; /* numerical register */
char fl; /* flag */
char sp; /# stack pointer #*/
int st[10]; /* stack #*/
int ip; /#* instruction pointer */

402

Thomas S. Ray

APPENDIX B
Abbreviated code for implementing the CPU cycle of the Tierra Simulator.

void main(void)

{ get_soup(Q);
life();
write_soup();

void life(void) /* doles out time slices and death */
{ while(inst_exec_c < alive) /# control the length of the run */

{

time_slice(this_slice); /# this_slice is current cell in queue */
incr_slice_queue(); /* increment this_slice to next cell in quene */
while(free_mem_current < free_mem_prop * soup_size)

reaper(); /* if memory is full to threshold, reap some cells #/

void time_slice(int ci)
{ Pcells ce; /* pointer to the array of cell structures */

char
int
int
ce

i; /* instruction from soup =/
di; /#* decoded instruction #*/
j, size_slice;

cells + ci;

for(j = 0; j < size_slice; j++)

{

i = fetch(ce->c.ip); /# fetch instruction from soup, at address ip */
di = decode(i); /* decode the fetched instruction #*/

execute(di, ci); /* execute the decoded instruction #*/
increment_ip(di,ce); /* move instruction pointer to next instruction */
system_work(); /* opportunity to extract information #*/

void execute(int di, int ci)
{ switch(di)

{

case 0x00: nop_0(ci); break; /* no operation */

case 0x01: nop_1(ci); break; /# no operation #/

case 0x02: orl(ci); break; /# flip low order bit of cx, cx "= 1 %/
case 0x03: shl(ci); break; /* shift left cx register, cx <<= 1 %/
case 0x04: zero(ci); break; /# set cx register to zero, cx = 0 */
case 0x05: if_cz(ci); break; /* if cx==0 execute next instruction #*/
case 0x06: sub_ab(ci); break; /# subtract bx from ax, c¢x = ax - bx #*/
case 0x07: sub_ac(ci); break; /# subtract cx from ax, ax = ax - cx */
case 0x08: inc_a(ci); break; /# increment ax, ax = ax + 1 */

case 0x09: inc_b(ci); break; /# increment bx, bx = bx + 1 */

case 0x0a: dec_c(ci); break; /* decrement cx, cx = cx - 1 */

case 0xOb: inc_c(ci); break; /# increment cx, cx = cx + 1 */

case 0xOc: push_ax(ci); break; /* push ax on stack */
case 0x0d: push_bx(ci); break; /+ push bx on stack */
case OxOe: push_cx(ci); break; /# push cx on stack */
case 0xOf: push_dx(ci); break; /* push dx on stack #*/

An Approach to the Synthesis of Life

case
case
case
case
case
case
case
case
case
case
case

case
case
case
case
case

}

inst_exec_c++;

0x10:
Oxi1:
0x12:
0x13:
Ox14:
0x15:
0x16:
0x17:
0x18:
0x19:
Oxla:

Ox1b:
Oxilc:
Oxid:
Oxle:
Oxi1f:

pop_ax(ei);
pop_bx(ci);
pop_cx(ci);
pop_dx(ci);
jmp(ei);
jmpb(ci);
call(ci);
ret(ci);
mov_cd(ci);
mov_ab(ci);
mov_iab(ci);

adr(ci);
adrb(ci);
adrf(ci);
mal(ci);
divide(ci);

break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;

break;
break;
break;
break;
break;

/%
/*
/*
/*
/*
/*
Fi)
/*
/*
/*
/%

/*
/=
/*
/*
/*

pPop top
pop top
pop top
pop top
move ip
move ip

of
of
of
of
to

backward to template */

inte
inte

stack
stack
stack into
stack into
template */

call a procedure */
return from a procedure */
move cx to dx, dx = cx */
move ax to bx, bx = ax #*/
move instruction at address in bx
to address in ax %/
address of nearest template to ax */

search backward for template */
search forward for template */

ax */
bx */
cx */
dx */

403

allocate memory for daughter cell =/
cell division */

404

Thomas S. Ray

APPENDIX C

Assembler source code for the ancestral creature.
genotype: 80 aaa origin: 1-1-1990 00:00:00:00 ancestor
parent genotype: human
1st_daughter:

2nd_daughter:
nop_1 ; 01
nop_1 ; 01
nop_1 HELE S
nop_1 ; 01
Zero ; 04
orl ; 02
shl ; 03
shl ; 03

H

H
mov_cd ; 18

3

H
adrb ; 1c
nop_0 ; 00
nop_0 ; 00
nop_0 ; 00
nop_0 ; 00

’

H
sub_ac ; 07

E
mov_ab ; 19

H

i
adrf ; 1d
nop_0 ; 00
nop_0 ; 00
nop_0 ; 00
nop_1 ; 01

1

i
inc_a ; 08
sub_ab ; 06

H
nop_1 ; 01
nop_1 ; 01
nop_0 ; 00
nop_1 ; 01
mal ; le

flags: O inst: 839 mov_daught: 80
flags: 0 inst: 813 mov_daught: 80

N3 m s WO

10
11
12
13

14

15

16
17
18
19
20

21
22

23
24
25
26
27

beginning template

beginning template

beginning template

beginning template

put zero in cx

put 1 in first bit of cx

shift left cx

shift left cx, now cx = 4

ax = bx =

cx = template size dx =

move template size to dx

ax = bx =

cx = template size dx = template size

get (backward) address of beginning template
compliment to begimning template

compliment to beginning template

compliment to beginning template

compliment to beginning template

ax = start of mother + 4 bx =

cx = template size dx = template size
subtract cx from ax

ax = start of mother bx
cx = template size dx
move start address to bx
ax = start of mother bx = start of mother

cx = template size dx = template size

get (forward) address of end template

compliment to end template

compliment to end template

compliment to end template

compliment to end template

ax = end of mother bx = start of mother

cx = template size dx = template size

to include dummy statement to separate creatures
subtract start address from end address to get size
ax = end of mother bx = start of mother

cx = size of mother dx = template size
reproduction loop template

reproduction loop template

reproduction loop template

reproduction loop template

allocate memory for daughter cell, address to ax
ax = start of daughter bx = start of mother

cx = size of mother dx = template size

template size

An Approach to the Synthesis of Life

call
nop_0
nop_0
nop_1
nop_1
divide
jmp
nop_0
nop_0
nop_1
nop._0
if_cz

nop_1
nop_1
nop_0
nop_0
push_ax
push_bx
push_cx
nop_1
nop_0
nop_1
nop_0
mov_iab
dec_c
if_cz
jmp
nop_0
nop_1
nop_0
nop_0
inc_a
inc_b
jmp
nop_0
nop_1
nop_0
nop_1
if_cz
nop_1
nop_0
nop_1
nop_1
Pop_cx
pop_bx
pop_ax
ret
nop_1
nop_1
nop_1
nop_0
if_cz

; 01
; 01

; 00
; De
; 0d

; 01

; 01

; 00
; la

Oa

; 05
;14

; 01

; 08

14

; 00
; 01
; 00
; 01
; 05
; 01
; 00
; 01
; 01
;12
3 L

10

;17
; 01
;p 01
; 01

; 05

28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
77
78
79

call template below (copy procedure)

copy procedure
copy procedure
copy procedure
copy procedure

compliment
compliment
compliment
compliment

create independent daughter cell
jump to template below (reproduction loop, above)

reproduction loop compliment
reproduction loop compliment
reproduction loop compliment
reproduction loop compliment

this is a dummy instruction to separate templates
begin copy procedure

copy procedure template
copy procedure template
copy procedure template
Procedure template

Ccopy
push
push
push
copy
copy
copy
copy

ax onto stack
bx onto stack
cx onto stack
loop template
loop template
loop template
loop template

move contents of [bx] to [ax]

decrement cx

if cx == O perform next instruction, otherwise skip it
jump to template below (copy procedure exit)

copy procedure
copy procedure
copy procedure
copy procedure
increment ax
increment bx

jump to template below (copy loop)

exit compliment
exit compliment
exit compliment
exit compliment

copy loop compliment
copy loop compliment
copy loop compliment
copy loop compliment

this is a dummy instruction, teo separate templates

copy procedure
copy procedure
Copy procedure
copy procedure

exit template
exit template
exit template
exit template

pop cx off stack
pop bx off stack
Pop ax off stack
Teturn from copy procedure

end template
end template
end template
end template

dummy statement to separate creatures

405

406 Thomas S. Ray

REFERENCES

1.

e

11.

12.

13.

14.

15.

16.

17

18.

19.

Ackley, D. H., and M. S. Littman. “Learning From Natural Selection in an
Artificial Environment.” In Proceedings of the International Joint Conference
on Neural Networks, Vol. 1, Theory Track, Neural and Cognitive Sciences
Track. (Washington, DC, Winter, 1990.) Hillsdale, NJ: Lawrence Erlbaum
Associates, 1990.

. Aho, A. V., J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of

Computer Algorithms. Reading, MA: Addison-Wesley, 1974.

Bagley, R. J., J. D. Farmer, S. A. Kauffman, N. H. Packard, A. S. Perelson,
and I. M. Stadnyk. “Modeling Adaptive Biological Systems.” Biosystems 23
(1989): 113-138.

. Barbieri, M. The Semantic Theory of Evolution. London: Harwood, 1985.
. Bell, G. The Masterpiece of Nature: The Evolution and Genelics of Sexuality.

Berkeley: University of California Press, 1982.

Bell, G. Sez and Death in Protozoa: The History of an Obsession. Cambridge:
Cambridge University Press, 1989.

Buss, L. W. The Evolution of Indwiduality. Princeton: Princeton University
Press, 1987.

. Cariani, P. “Emergence and Artificial Life.” This volume

Carroll, L. Through the Looking-Glass. London: MacMillan, 1865.

- Charlesworth, B. “Recombination Modification in Fluctuating Environ-

ment.” Genetics 83 (1976): 181-195.

Cohen, F. “Computer Viruses: Theory and Experiments.” Ph. D. disserta-
tion, University of Southern California, 1984.

Dawkins, R. The Blind Watchmaker. New York: Norton, 1987.

Dawkins, R. “The Evolution of Evolvability.” In Artificial Life, edited by C.
Langton. Santa Fe Institute Studies in the Sciences of Complexity, Proc. Vol.
VI, 201-220. Reading, MA: Addison-Wesley, 1989.

Denning, P. J. “Computer Viruses.” Amer. Sci. 76 (1988): 236-238.
Dewdney, A. K. “Computer Recreations: In the Game Called Core War Hos-
tile Programs Engage in a Battle of Bits.” Sci. Amer. 250 (1984): 14-22.
Dewdney, A. K. “Computer Recreations: A Core War Bestiary of Viruses,
Worms and Other Threats to Computer Memories.” Sci. Amer. 252 (1985):
14-23.

Dewdney, A. K. “Computer Recreations: Exploring the Field of Genetic Al-
gorithms in a Primordial Computer Sea Full of Flibs.” Sci. Amer. 253 (1985):
21-32.

Dewdney, A. K. “Computer Recreations: A Program Called MICE Nibbles
Its Way to Victory at the First Core War Tournament.” Sci. Amer. 256
(1987): 14-20.

Dewdney, A. K. “Of Worms, Viruses and Core War.” Seci. Amer. 260 (1989):
110-113.

An Approach to the Synthesis of Life 407

20.

21.

22.

23.

24,

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

Doolittle, W. F., and C. Sapienza. “Selfish Genes, the Phenotype Paradigm
and Genome Evolution.” Nature 284 (1980): 601-603.

Eldredge, N., and S. J. Gould. “Punctuated Equilibria: An Alternative to
Phyletic Gradualism.” In Models in Paleobiology, edited by J. M. Schopf, 82-
115. San Francisco: Greeman, Cooper, 1972.

Farmer, J. D., S. A. Kauffman, and N. H. Packard. “Autocatalytic Replica-
tion of Polymers.” Physica D 22 (1986): 50-67.

Farmer, J. D., and A. Belin. “Artificial Life: The Coming Evolution.” Pro-
ceedings in celebration of Murray Gell-Man’s 60th Birthday. Cambridge:
Cambridge University Press. In press. Reprinted in this volume.

Gould, S. J. Wonderful Life, The Burgess Shale and the Nature of History.
New York: Norton, 1989.

. Gould, S. J., and N. Eldredge. “Punctuated Equilibria: The Tempo and Mode

of Evolution Reconsidered.” Paleobiology 3 (1977): 115-151.

Green, M. M. “Mobile DNA Elements and Spontaneous Gene Mutation.”

In Eukaryotic Transposable Elements as Mutagenic Agents , edited by M. E.
Lambert, J. F. McDonald, and I. B. Weinstein, 41-50. Banbury Report 30.
Cold Spring Harbor Laboratory, 1988.

Holland, J. H. Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control, and Artificial Intelligence.
Ann Arbor: University of Michigan Press, 1975.

Holland, J. H. “Studies of the Spontaneous Emergence of Self-Replicating
Systems Using Cellular Automata and Formal Grammars.” In Automata,
Languages, Development, edited by A. Lindenmayer, and G. Rozenberg, 385~
404. New York: North-Holland, 1976.

Huston, M. “A General Hypothesis of Species Diversity.” Am. Nat. 113 (1979):
81-101.

Jelinek, W. R., and C. W. Schmid. “Repetitive Sequences in Eukaryotic DNA
and Their Expression.” Ann. Rev. Biochem. 51 (1982): 813-844.

Langton, C. G. “Studying Artificial Life With Cellular Automata.” Physica
22D (1986): 120-149.

Langton, C. G. “Virtual State Machines in Cellular Automata.” Complez
Systems 1 (1987): 257-271.

Langton, C. G., ed. “Artificial Life.” In Artificial Life, Santa Fe Institute
Studies in the Sciences of Complexity, Proc. Vol. VI, 1-47. Reading, MA:
Addison-Wesley, 1989, .

Lotka, A. J. Elements of Physical Biology. Baltimore: Williams and Wilkins,
1925. Reprinted as Elements of Mathemalical Biology, Dover Press, 1956.
MacArthur, R. H., and E. O. Wilson. The Theory of Island Biogeography.
Princeton: Princeton University Press, 1967.

Maynard-Smith, J. “What Use is Sex?” J. Theor. Biol. 30 (1971): 319-335.
Michod, R. E., and B. R. Levin, eds. The Evolution of Sex. Sutherland, MA:
Sinauer, 1988.

Minsky, M. L. Computation: Finite and Infinite Machines. Englewood Cliffs,
NJ: Prentice-Hall, 1976.

408 Thomas S. Ray

39.

40.

4].

42.

43.

44,

45.

46.

47,

48.

49.

50.

51.

Morris, S. C. “Burgess Shale Faunas and the Cambrian Explosion.” Science
246 (1989): 339-346.

Orgel, L. E., and F. H. C. Crick. “Selfish DNA: The Ultimate Parasite.” Na-
ture 284 (1980): 604-607.

Paine, R. T. “Food Web Complexity and Species Diversity.” Am. Nat. 100
(1966): 65-75.

Packard, N. H. “Intrinsic Adaptation in a Simple Model for Evolution.” In
Artificial Life, edited by C. Langton. Santa Fe Institute Studies in the Sci-
ences of Complexity, Proc. Vol. VI, 141-155. Reading, MA: Addison-Wesley,
1989.

Pattee, H. H. “Simulations, Realizations, and Theories of Life.” In Artifi-
cial Life, edited by C. Langton. Santa Fe Institute Studies in the Sciences

of Complexity, Proc. Vol. VI, 63-77. Reading, MA: Addison-Wesley, 1989.
Petraitis, P. S., R. E. Latham, and R. A. Niesenbaum. “The Maintenance of
Species Diversity by Disturbance.” Quart. Rev. Biol. 64 (1989): 393-418.
Rasmussen, S., C. Knudsen, R. Feldberg, and M. Hindsholm. “The Core-
world: Emergence and Evolution of Cooperative Structures in a Computa-
tional Chemistry” Physica D. 42 (1990): 111-134.

Rheingold, H. “Computer Viruses.” Whole Earth Review Fall (1988): 106.
Ray, T. S. “Synthetic Life: Evolution and Ecology of Digital Organisms.” Un-
published, 1990.

Spafford, E. H., K. A. Heaphy, and D. J. Ferbrache. Computer Viruses, Deal-
ing with Electronic Vandalism and Programmed Threats. ADAPSO, 1300 N.
17th Street, Suite 300, Arlington, VA 22209, 1989.

Stanley, S. M. “An Ecological Theory for the Sudden Origin of Multicellular
Life in the Late Precambrian.” Proc. Nat. Acad. Sci. T0 (1973): 1486-1489.
Syvanen, M. “The Evolutionary Implications of Mobile Genetic Elements.”
Ann. Rev. Genel. 18 (1984): 271-293.

Thomas, C. A. “The Genetic Organization of Chromosomes.” Ann. Rev.
Genet. 5 (1971): 237-256.

. Van Valen, L. “A New Evolutionary Law.” Evol. Theor. 1 (1973): 1-30.
. Volterra, V. “Variations and Fluctuations of the Number of Individuals in

Animal Species Living Together.” In Animal Ecology, edited by R. N. Chap-
man, 409-448. New York: McGraw-Hill, 1926.

. Wilson, E. O., and W. H. Bossert. A Primer of Population Biology. Stamford,

CN: Sinauers, 1971.

